Derivatives of Inverse Trigonometric Functions

In this section, we will learn the derivative formulas of the inverse trigonometric functions with their proofs.

WhatsApp Group Join Now
Telegram Group Join Now

Now we calculate the derivative of $\sin^{-1}x$ (or arc sin x).

Derivative of $\sin^{-1}x$

\[\frac{d}{dx}(\sin^{-1}x)=\frac{1}{\sqrt{1-x^2}} \, (|x|<1)\]

Proof: Note that $\sin^{-1}x$ is defined when $|x| \leq 1.$ We assume that
\[y=\sin^{-1}x.\] As $|x| \leq 1$, we must have that $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}.$ \[y=\sin^{-1}x \Rightarrow x=\sin y\] Differentiating with respect to $y$, we have \[\frac{dx}{dy}=\frac{d}{dx}(\sin y)=\cos y\] \[\Rightarrow \frac{dx}{dy}=1-\sin^2 y\] \[\Rightarrow \frac{dx}{dy}=\sqrt{1-x^2}\] Therefore, we deduce that \[\frac{dy}{dx}=\frac{1}{dx/dy}=\frac{1}{\sqrt{1-x^2}}\] So the derivative of $\sin^{-1}x$ is $\frac{1}{\sqrt{1-x^2}}$, where $|x|\leq 1.$ ♣

 

Next, we find the derivative of $\cos^{-1}x$ (or arc cos x).

Derivative of $\cos^{-1}x$

\[\frac{d}{dx}(\cos^{-1}x)=-\frac{1}{\sqrt{1-x^2}} \, (|x|<1)\]

Proof: We know that \[\sin^{-1}x+\cos^{-1}x=\frac{\pi}{2}\] Differentiating with respect to $x$, we get \[\frac{d}{dx}(\sin^{-1}x+\cos^{-1}x)=\frac{d}{dx}(\frac{\pi}{2})\]\[\Rightarrow \frac{d}{dx}(\sin^{-1}x)+\frac{d}{dx}(\cos^{-1}x)=0\]

[as the derivative of a constant is zero]

\[\Rightarrow \frac{1}{\sqrt{1-x^2}}+\frac{d}{dx}(\cos^{-1}x)=0\] \[\Rightarrow \frac{d}{dx}(\cos^{-1}x)=-\frac{1}{\sqrt{1-x^2}}\] So the derivative of $\cos^{-1}x$ is $-\frac{1}{\sqrt{1-x^2}}$, where $|x|\leq 1.$ ♣

 

Let us now calculate the derivative of $\tan^{-1}x$ (or arc tan x).

Derivative of $\tan^{-1}x$

\[\frac{d}{dx}(\tan^{-1}x)=\frac{1}{1+x^2} \, (-\infty<x<\infty)\]

Proof: Note that $\tan^{-1}x$ is defined when $-\infty<x<\infty.$ We assume that \[y=tan^{-1}x.\] As $-\infty<x<\infty$, we must have that $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}.$ \[y=\tan^{-1}x \Rightarrow x=\tan y\] Differentiating with respect to $y$, we have \[\frac{dx}{dy}=\frac{d}{dx}(\tan y)=\sec^2 y\] \[\Rightarrow \frac{dx}{dy}=1+\tan^2 y\] \[\Rightarrow \frac{dx}{dy}=1+x^2\] Therefore, we deduce that \[\frac{dy}{dx}=\frac{1}{dx/dy}=\frac{1}{1+x^2}\] So the derivative of $\tan^{-1}x$ is $\frac{1}{1+x^2}$, where $-\infty<x<\infty.$ ♣

 

Next, we find the derivative of $\cot^{-1}x$ (or arc cot x).

Derivative of $\cot^{-1}x$

\[\frac{d}{dx}(\cot^{-1}x)=-\frac{1}{1+x^2} \, (-\infty<x<\infty)\]
Proof:  We know that \[\tan^{-1}x+\cot^{-1}x=\frac{\pi}{2}\] Differentiating with respect to $x$, we get \[\frac{d}{dx}(\tan^{-1}x+\cot^{-1}x)=\frac{d}{dx}(\frac{\pi}{2})\] \[\Rightarrow \frac{d}{dx}(\tan^{-1}x)+\frac{d}{dx}(\cot^{-1}x)=0\]

[as the derivative of a constant is zero]

\[\Rightarrow \frac{1}{1+x^2}+\frac{d}{dx}(\cot^{-1}x)=0\] \[\Rightarrow \frac{d}{dx}(\cot^{-1}x)=-\frac{1}{1-x^2}\] So the derivative of $\cot^{-1}x$ is $-\frac{1}{1+x^2}$, where $-\infty<x<\infty.$ ♣

 

We now calculate the derivative of $\sec^{-1}x$ (or arc sec x).

Derivative of $\sec^{-1}x$

\[\frac{d}{dx}(\sec^{-1}x)=\frac{1}{x\sqrt{x^2-1}} \, (|x|>1)\]
Proof: Note that $\sec^{-1}x$ is defined when $|x|>1.$ We assume that \[y=\sec^{-1}x.\] \[ \Rightarrow x=\sec y\] Differentiating with respect to $y$, we have \[\frac{dx}{dy}=\frac{d}{dx}(\sec y)=\sec y \tan y\] \[\Rightarrow \frac{dx}{dy}=\sec y \sqrt{\sec^2y-1}\] \[\Rightarrow \frac{dx}{dy}=x\sqrt{x^2-1}\] Therefore, we deduce that \[\frac{dy}{dx}=\frac{1}{dx/dy}=\frac{1}{x\sqrt{x^2-1}}\] So the derivative of $\sec^{-1}x$ is $\frac{1}{x\sqrt{x^2-1}}$, where $|x|>1.$ ♣

 

Next, we find the derivative of $\text{cosec}^{-1}x$ (or arc cosec x).

Derivative of $\text{cosec}^{-1}x$

\[\frac{d}{dx}(\text{cosec}^{-1}x)=-\frac{1}{x\sqrt{x^2-1}} \, (|x|>1)\]
Proof: We know that \[\sec^{-1}x+\text{cosec}^{-1}x=\frac{\pi}{2}\] Differentiating with respect to $x$, we get \[\frac{d}{dx}(\sec^{-1}x+\text{cosec}^{-1}x)=\frac{d}{dx}(\frac{\pi}{2})\] \[\Rightarrow \frac{d}{dx}(\sec^{-1}x)+\frac{d}{dx}(\text{cosec}^{-1}x)=0\]

 [as the derivative of a constant is zero]

\[\Rightarrow \frac{1}{x\sqrt{x^2-1}}+\frac{d}{dx}(\text{cosec}^{-1}x)=0\] \[\Rightarrow \frac{d}{dx}(\text{cosec}^{-1}x)=-\frac{1}{x\sqrt{x^2-1}}\] So the derivative of $\text{cosec}^{-1}x$ is $-\frac{1}{x\sqrt{x^2-1}}$, where $|x|> 1.$ ♣

Share via:

Leave a Comment

WhatsApp Group Join Now
Telegram Group Join Now